
A Modular Single Cell for Conway’s Game of
Life

Jordan Lewis

Abstract

The cellular structure of Conway’s Game of Life provides an excellent
challenge in electronic design: to create a self-contained circuit that will
perform the logic of a single cell, and display the result. These circuits
will have the property that they can be connected in an orthogonal grid
as in the Game of Life itself, allowing for a large simulation of the Game
of Life simply by connecting many of these modular units.

1 Introduction

The Game of Life is a cellular automaton created by mathematician John Con-
way. It is describable with only four simple rules, yet the right starting states
can generate surprisingly complex results. It is Turing-complete, and has been
the subject of considerable study, both focusing on algorithms for simulating the
automaton and on the varied kinds of patterns that can emerge from running
it.

1.1 Rules

As a cellular automaton, the Game of Life runs on an infinite grid of two-
dimensional squares, each of which can either be alive or dead. The function
that decides what state a cell will be in on the next turn, given the current states
of its 8 neighbors and itself, can be described with the following pseudocode.

Game-of-Life(n1, n2, n3, n4, n5, n6, n7, n8, cur -state)

n =
∑8

i=1 ni

if cur -state == 1 and n ⊂ {2, 3}
return 1

elseif cur -state == 0 and n == 3
return 1

elseif n < 2 or n > 3
return 0

1



1.2 Goal: Implementation of a Single Cell

Game-of-Life gives us enough information to design logic that will output the
state of a cell, given the state of its eight neighbors and its own state. It seems,
therefore, that it should not be too much trouble to design a circuit that will
implement this logic. By adding some extra machinery to store and display the
one bit of liveness for a single cell, and a switch to set the liveness of the cell, we
will have created a stand-alone cell for the Game of Life that can be connected
with others of its ilk to form a larger simulation.

2 Design

2.1 Logic Design

The central problem in designing this circuit is the logic necessary to implement
Game-of-Life. We could build a truth table that shows every combination of
inputs and the resulting output, as below:

n1 n2 n3 n4 n5 n6 n7 n8 cur next
f f f f f f f f f f
...

...
...

...
...

...
...

...
...

...
f f t f f f t f t t
...

...
...

...
...

...
...

...
...

...
t t t t t t t t t f

Clearly, listing the whole table would be of dubious value: since we have
nine inputs, the table would have 29 rows. Synthesis from the canonical sum of
products would need a prohibitively large number of gates, and Karnaugh maps
begin to lose their ability to organize truth tables after only about four inputs.

Game-of-Life is not unstructured, though: at its core, it is simply trying
to calculate the number of live adjacent neighbors. This is the same as the
Hamming weight of the 8-bit word formed by the ni arguments. It is a simple
matter to calculate the Hamming weight of 2n − 1 bits by chaining together
a bunch of full adders, as in the 7-bit Hamming weight calculator in Figure
1a. Game-of-Life requires calculating the Hamming weight of an 8-bit word,
however. Creating a 15-bit Hamming weight calculator would work, but there
are a few optimizations we can make to reduce the complexity of the circuit.

1. Since our function kills a cell if has four or more neighbors, we can safely
not worry about combining both 4-bit sums with another full adder.

2. Since we only need 8 bits of the 15 bits available, we can replace the
low-order full adders with half-adders. This is more clearly illustrated in
Figure 2a.

Once the Hamming weight network is complete, we are left with the Ham-
ming weight of the 8-bit neighbors word, represented with two 4s places, one 2s

2



S
A

B

C
in

C
o
u
t

Full Adder

S
A

B

C
in

C
o
u
t

Full Adder

S
A

B

C
in

C
o
u
t

Full Adder

S
A

B

C
in

C
o
u
t

Full Adder

b1

b2

b3

b4

b5

b6

b7

4s place

2s place

1s place

(a) 7-bit Hamming weight calculator

B

A

Cin

Cout

S

(b) Full adder

Figure 1

place, and one 1s place. In addition, we must deal with the cur -state input bit.
It is simple to compute the rest of Game-of-Life given these inputs, however:

Finish-GOL(4s-place2 , 4s-place2 , 2s-place, 1s-place, cur -state)
not-overcrowded = 4s-place1 NOR 4s-place2
at-least-3 = 2s-place AND 1s-place
2 -and -alive = 2s-place AND cur -state
alive-if -not-overcrowded = 2 -and -alive OR at-least-3
return alive-if -not-overcrowded AND not-overcrowded

Implementing Finish-GOL requires only 5 gates, and is visible on the upper-
right side of Figure 2a. Figure 2a is a complete implementation of Game-of-
Life.

2.2 Other Design

With the core logic implemented, the only thing left to do is adding the machin-
ery that will save and display the state of the cell, allow the user to manually set
the state of the cell, and allow an external clock to tell the cell when to update.

Since all we are storing is the current state of the cell, a one-bit quantity,
a single D-type flip-flop is all that we need. We want the user to be able to
manually override the function and set the state to either on or off, so we will
use a D-type flip-flop with set and reset inputs.

The set and reset inputs will be driven by a set of two switches: one
SPDT switch (STATE) that controls what state the cell will be set to, and
one normally-low push-button switch (PROGRAM) that will asynchronously
set the cell’s state to the state of STATE. PROGRAM is NANDed with STATE
to get set, and PROGRAM is NANDed with STATE to get reset.

3



n1

n2

n3

n4

n5

n6

S
A

B

C
in

C
o
u
t

Full Adder

S
A

B

C
in

C
o
u
t

Full Adder

n7

n8

S
A

B

C

Half Adder

S
A

B

C

Half Adder

S
A

B

C
in

C
o
u
t

Full Adder S
A

B

C
in

C
o
u
t

Full Adder

S
A

B

C
Half Adder

cur-state

next state

(a) Game-of-Life

A

B
S

C

(b) Half adder

Figure 2

Once this is done, we complete the feedback loop by replacing the external
cur -state input with the non-inverting output of the D-flop, and connecting the
end output of the Game-of-Life circuit in Figure 2a to the D input of the
D-flop.

Our circuit is complete (Figure 3), and in addition to the 8 neighbor state
inputs, it now requires an external clock signal. At this point, we can replace
our detailed schematic with a black box. By connecting these black boxes in a
grid and adding an external clock, we can create an arbitrarily large simulation
of Conway’s Game of Life. An example 3x3 grid is reproduced in (Figure 4).

2.3 Design limitations

The major weakness of this design is the clocking setup. As it is, race conditions
between the clock pulse and states updating will be common. The way to
prevent this is to let the clock pulse propagate from one corner of the grid down
by adding circuitry to each cell that, upon receving a clock pulse and updating
its state, re-broadcasts the clock pulse to the cell below. The limitation of this
model is that, to avoid cells receiving clock pulses from more than one source,
we must give special circuitry to the top row of cells that resends the clock pulse
to both the cell below and the cell to the right.

Another weakness is the difficulty of connecting many modules together, as
is apparent from the messiness of Figure 4. A cleaner design might use a 3x3-cell
grid as the fundamental unit. This would simplify the connection process by
quadratically reducing the number of connections to be made.

4



n1

n2

n3

n4

n5

n6

S
A

B

C
in

C
o
u
t

Full Adder

S
A

B

C
in

C
o
u
t

Full Adder

n7

n8

S
A

B

C
Half Adder

S
A

B
C

Half Adder

S
A

B

C
in

C
o
u
t

Full Adder S
A

B

C
in

C
o
u
t

Full Adder

S
A

B

C

Half Adder

clock

S
D

R

Q

Q' NC

Vdd PROGRAM

STATE

Figure 3: Complete single cell; PROGRAM switch high, STATE switch low

Finally, as the number of connected modules becomes greater, the effects
of propagation time would become apparent. Since each cell depends only on
the cells directly adjacent to it, however, propagation delay shouldn’t pose a
problem.

3 Conclusion

While effective for small grids, this solution does not scale well enough to extend
to large simulations, due to fundamental issues with both the chosen atomic unit
and the clocking scheme. A more nuanced, propagating clocking scheme, while
more complex to implement, would remove the design flaw.

5



n6

n5

state

n2

n1

clock

n
4

n
3

n
8

n
7

gol

n6

n5

state

n2

n1

clock

n
4

n
3

n
8

n
7

gol

n6

n5

state

n2

n1

clock
n
4

n
3

n
8

n
7

gol

n6

n5

state

n2

n1

clock
n
4

n
3

n
8

n
7

gol

n6

n5

state

n2

n1

clock

n
4

n
3

n
8

n
7

gol

n6

n5

state

n2

n1

clock

n
4

n
3

n
8

n
7

gol

n6

n5

state

n2

n1

clock

n
4

n
3

n
8

n
7

gol

n6

n5

state

n2

n1

clock
n
4

n
3

n
8

n
7

gol

n6

n5

state

n2

n1

clock

n
4

n
3

n
8

n
7

gol

CLOCK

Figure 4: 3x3 array of single cells, clocked externally

6


